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ABSTRACT 

The Navier-Stokes (NS) equations are the cornerstone of fluid mechanics. It is solved for given initial 

and boundary conditions in order to study the dynamics of fluids. Falkner-Skan (FS) developed a 

solution for these equations in laminar flow, as a generalization of the Blasius boundary layer. The 

idea is to represent accelerating (Favorable Pressure Gradient, FPG) or decelerating (Adverse 

Pressure Gradient, APG) flows, whose freestream velocity varies as a power law of the streamwise 

coordinate. the primary purpose of this work is to solve this set of equations for the laminar 

compressible flow case subject to streamwise pressure gradients via the use of the Illingworth (which 

considers only the effects of the local density) and Howarth (which takes into account the changes of 

the local density with respect to the free stream density) transformations, by considering supersonic 

and hypersonic Mach numbers and different wall temperature conditions (cold, adiabatic and hot wall 

conditions). It will also include a study of different pressure gradient parameters (i.e.,  parameter). 

In conclusion, the algorithm developed for Falkner-Skan incompressible and compressible flow was 

effectively validated. As the Mach number increases up to hypersonic levels, the temperature ratio 

significantly increases in the near wall region for adiabatic conditions. It is important to mention that 

as the Mach number increases, the velocity boundary layer thickness decreases, whereas the shear 

stress near the wall increases. 

 

KEY WORDS: Falkner-Skan, Compressible Flow, Laminar, Turbulence, Skin friction, Boundary Layer 

 

1. INTRODUCTION AND THEORETICAL BACKGROUND 

 
New technologies always require new tactics for their understanding. As technology progresses the speed of 

the fluid flow increases and the problems that come with it become more apparent (large variations in density 

with respect to pressure). Therefore, new methods and studies are required to solve these issues. One important 

aspect to start solving this problem is the fluid motion characterization via the Navier-Stokes equations for 

compressible flow in aerodynamic high-speeds. 

 

The Navier-Stokes (NS) equations are the cornerstone of fluid mechanics. The Clay Mathematics Institute [1] 

has called the analytical solution in three-dimensions of NS equations as one of the seven most important open 

problems in mathematics. Numerically, they are solved for given initial and boundary conditions in order to 

study the fluid dynamics. There are few analytical or semi-analytical solutions for these equations due to its 

complexity, non-linearity and three-dimensionality. According to the Prandtl theory [2, 3] these equations can 

be solved by dividing the flow in two regions separated by a boundary layer. As seen in Figure 1 these regions 

are classified as a near wall region or boundary layer where the viscosity effects are important, and a further 

wall region were the viscosity effect are practically negligible (inviscid flow).   
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Fig. 1: Prandtl Boundary Layer Diagram. 

 
With the help of Prandtl theory, Blasius [4] developed a general solution of the Navier-Stokes equations by 
introducing the concept of similarity to the NS equations and solving them for a flat plate. Later, Falkner and 
Skan [4] introduced the streamwise pressure gradient concept to give a more general solution for wedges and 
constant pressure gradient situations. At the end, the final equations obtained from this analysis can be used to 
obtain the boundary layer thickness, the skin friction coefficient, the local streamwise and wall-normal velocity 
components, etc. via a Runge-Kutta or numerical integration. 
 
As previously stated, as technology and high-speed vehicles progress the fluid free stream velocity 
significantly increases until the flow becomes compressible and the thermodynamic effects needed to be 
accounted for in the Falkner-Skan equations. It is important to mention that compressibility effects are very 
difficult to study, because of its high-density variation with pressure, particularly in hypersonic flows, i.e. for 
Mach numbers larger than or equal to 5. 
 
A few years later, Horwath and Illingworth proposed a solution to the FS equations for compressible flows by 
taking in to account the changes in density and coupling them with the energy equation. Howarth [4] solution 
reduces the compressible boundary layer to an incompressible boundary layer by assuming a constant free 
stream velocity and Illingworth [5] solution calculates the effect of compressibility on the separation of the 
laminar boundary layer by assuming a linearly  retarded mainstream which yield more accurate results than 
Howarth [6]. With any of these two approaches the FS equations can be solved for compressible to obtain the 
parameters mentioned above. 
 
The original Falkner-Skan equations assume laminar flow. However, most of the wall-bounded flows are 
turbulent, which the flow is chaotic and not very easy to study. Thus, most flows studied in fluid mechanics is 
dominated by compressibility effects and turbulence effects. Turbulence is characterized by a huge range 
between length and time scales, flow fluctuations and large Reynolds numbers. The main difference between 
turbulent and laminar boundary layers is that in the laminar section mass, momentum and energy are 
transported among streamlines in an orderly manner by molecular diffusion, but turbulent is characterized by 
disorderly and rapid fluctuations called eddies which transport the energy, momentum and mass mush rapidly 
than molecular diffusion greatly enhancing them. As a consequence, the equation to study the laminar flow 
are obtained analytically but for turbulence flow, due to the fact that that eddies are not so easy to study, 
turbulent flow is studied with semiempirical equations [2, 7]. The main approach to study turbulent flow is via 
the law of the wall. This law is a dimensional analysis of the near wall region assuming that the turbulence 
near the boundary is a function of the flow conditions at that wall and independent of flow conditions further 
away [8]. Other parameters studied are the Reynolds turbulence intensities which gives an idea of the 
magnitude of the turbulence fluctuations and the Reynolds stresses which are proportional to the forces on the 
fluid due to turbulence nature. An important aspect is that if compressible flow is considered a temperature 
boundary layer develops and must be considered in the analysis. 
 

Research has been done to study the boundary layer turbulent flow. Xenos, et al. [9] studied the compressible 

turbulent boundary-layer flow over a permeable wedge numerically and its effects of localized suction, applied 

to the region of the separation point. The compressible turbulent boundary-layer flow was studied via the 

models of Cebeci–Smith (C–S) and Baldwin–Lomax (B–L). They concluded that as the power parameter m 

increased, the dimensionless skin friction coefficient Cf, the local Stanton number St, and the total drag D, 

increase as well. Suction always increases the total drag over the wedge; and injection decreases the total drag 

over the wedge. Also, they stated that the combination of the localized suction and injection is important for 

drag reduction and prevention of boundary-layer separation. Furthermore, in Xenos and Pop [10], it was 

studied the effects of thermal radiation and localized suction on the steady turbulent compressible boundary 
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layer flow with adverse pressure gradient. Thermal radiation has significant effects on the flow field, especially 

at high temperatures. Two algebraic turbulence models: the Cebeci and Smith (C–S) [11] the Baldwin Lomax 

(B–L) [12]. They found that the thermal radiation and localized suction influenced all the important flow 

characteristics (separation point, total drag, and the thermal boundary layer) and that the effect of radiation 

altered the thermal boundary layer above the flat plate giving it a cooling effect on the fluid at the plate vicinity 

and a slight increase of the maximum temperature of the compressible boundary layer. Knight et al.  [13]. 

developed a Large Eddy Simulation (LES) approach for an expanding corner flow at Mach 3 and validated it 

with experiments, obtaining very good agreement as seen in their Figures 3 and 4. 

 

Holden et al. [14] conducted an experiment to examine the changes in the structure at the base of a hypersonic 

turbulent boundary layer subjected to a strong self-induced pressure gradient in regions of shock 

wave/boundary layer interaction and obtained results in agreement with the law of the wall for the velocity 

distribution at Mach numbers of 11, 13 and 16 (see figures 5 and 6 in [14] ). 

 

Xu and Martin  [15] proposed an inflow generation methodology, inspired by the strong Reynolds analogy 

(SRA), for compressible turbulent boundary layers. They showed good agreement with the Walz equation 

distribution. 
 
In addition, there have been a wide range of aircraft and other vehicles in which supersonic and hypersonic 
flow theory have been applied. One of the first was the Silbervogel orbital bomber in which Sanger and Bredt  
[16] tried to solve and state the problems and solutions of supersonic flight at Mach 3. Another, application is 
in hypersonic missiles. These missiles travel almost at Mach 6 and they are highly manoeuvrable which makes 
them very difficult to intercept and destroy [17]. Also, according to NASA hypersonic and supersonic flow 
have a very important impact in space shuttle re-entry due to the high Mach numbers achieve (around Mach 
10) [18]. 
 
This work is an attempt to solve the Falkner-Skan equations for compressible flow via the Illingworth and 
Horwath transformations [19]. By comparing the obtained results with incompressible flow solutions, the 
corresponding compressibility effects will be evaluated. 

 

2. MATHEMATICAL ANALISIS 
 

This section shows the mathematical analysis used to obtain the solution of the FS equations for laminar 

incompressible and compressible flows, as well as an alternate solution to the compressible flow. 

 

2.1 The Compressible Navier Stokes Equations 

 
The Navier –Stokes Equations are divided in three sections: a continuity equation which takes into account the 

continuity of the flow, a momentum equation which studies the dynamic of the flow and energy equation which 

studies the fluid energy movement. 

 

The continuity equation is given as: 

 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) = 0          (1) 

 

The x momentum equation is given as: 

 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝜌𝑒

𝜕𝑥
+

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
)         (2) 

 

The y momentum equation is given as: 

 
𝜕𝑝

𝜕𝑦
= 0             (3) 
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The energy equation is given as: 

 

𝜌 (
𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑥
+ 𝑣

𝜕ℎ

𝜕𝑦
) =

𝜕𝑝𝑒

𝜕𝑡
+ 𝑢

𝜕𝑝𝑒

𝜕𝑥
+

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝜇(

𝜕𝑢

𝜕𝑦
)2       (4) 

 

2.2 The Incompressible Navier Stokes Equations 

 
In the steady incompressible flow, if buoyancy is neglected the velocity is uncoupled from the temperature field. 

This means that the Navier-Stokes equations can be applied without taking in to account the energy section [4]. 

Applying this assumption to equation 1 and 2, the Navier-Stokes equation becomes: 

 

The continuity equation: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0            (5) 

 

The x-momentum equation in two-dimensional form reads: 

 

(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝑈

𝑑𝑈

𝑑𝑥
+ μ

𝜕2𝑢

𝜕𝑦2           (6) 

 

2.3 The Falkner Skan Compressible Flow Solution 
 

The Falkner-Skan solution for compressible flow is obtained via the application of the Illinworth and the 

Howarth transformation to the NS equations (equations 1, 2, 3, 4). 

 

Illingworth accounted for viscosity effects in ξ and ɳ, as seen in the following equations [19]: 

𝜉 = ∫ 𝜌𝑒(𝑥) 𝑈𝑒(𝑥) 𝜇𝑒(𝑥) 𝑑𝑥
𝑥

0
          (7) 

 

𝜂 =
𝑈𝑒

√2𝜉
∫ 𝜌

𝑦

0
𝑑𝑦           (8) 

 

Howarth considered the variation of the ratio between the freestream density and the local density [20]:  

 

𝜂 = 𝑌1√
𝑈

2𝑣∞𝑥1
           (9) 

 

𝑌1 = ∫
𝜌

𝜌∞

𝑌

0
 𝑑𝑌          (10) 

 

𝑥1 = 𝑥            (11) 
 

Applying this similarity equations (Illingworth or Horwath) to the NS compressible equations (equations 1, 2, 

3, 4) the following Falkner-Skan compressible flow equations are obtained: 

 

Momentum equation: 

 

𝐶 ∗ 𝐹′′′ + 𝐹𝐹′′ = 𝛽 ∗ (𝐹′ ∗ 𝐹′ − 𝑔)        (12) 

 

Energy equation: 

 

𝐶 ∗ 𝑔′′ + 𝑃𝑟 ∗ 𝐹 ∗ 𝑔′ = −𝐵 ∗ 𝐶 ∗ (𝐹′′ ∗ 𝐹′′)       (13) 
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Where: 

𝐶 = 𝑔−1/3           (14) 

 

𝐵 = 𝑃𝑟 ∗ (𝛾 − 1) ∗ 𝑀𝑎𝑒
2           (15) 

 

In this equations F’’ is related to the shear stress, F’ is related to the velocity, F is related to the stream function, 

 is the pressure gradient related to the wedge angle, C is the ratio between the density and viscosity and the 

stream density and viscosity, g’ is related to the thermal gradient and g is related to the temperature and density 

ratios. 

 

The local velocity can be obtained as: 

 

𝑢 = 𝑈𝑒𝐹′           (16) 

 

The skin friction coefficient is obtained as: 

 

𝐶𝑓 =
2𝜏𝑤

𝜌𝑒𝑈𝑒
2           (17) 

 

The β parameter can be obtained as: 

 

𝛽 = 2 ∗ 𝜃/𝜋           (18) 

 

The boundary layer can be obtained by finding η where the local speed is 99% of the freestream velocity, this 

value is used in equation 6 to obtain the y coordinate when this happens for different x values. Note that the 

Blasius solution can be obtained by setting C = 1 and  = 0 for a flat plate. 

 

2.4 The Falkner Skan Alternate Compressible Flow Solution 
 

As stated in section 2.3, the alternate Falkner-Skan solution for compressible flow is obtained via the 

application of the Illinworth (equation 7 and 8) and the Howarth (equation 9, 10 and 11) transformation to the 

NS equations (equations 1, 2, 3, 4). 

 

Applying this similarity equations (Illingworth or Horwath) to the NS compressible equations (equations 1, 2, 

3, 4) a more general Falkner-Skan compressible flow equations can be obtained by assuming 𝐶 = 𝑔𝑝. 

 

Momentum equation: 

 

𝑃 ∗ 𝑔(𝑃−1) ∗ 𝑔′ ∗ 𝐹′′ + 𝑔𝑃 ∗ 𝐹′′′ + 𝐹 ∗ 𝐹′′ = 𝛽 ∗ (𝐹′ ∗ 𝐹′ − 𝑔)     (19) 

 

Energy equation: 

 

𝑃 ∗ 𝑔(𝑃−1) ∗ 𝑔′ ∗ 𝑔′ + 𝑔𝑃 ∗ 𝑔′′ + 𝑃𝑟 ∗ 𝐹 ∗ 𝑔′ = −𝐵 ∗ 𝑔𝑝 ∗ (𝐹′′ ∗ 𝐹′′)    (20) 

 

Where: 

𝑃 = −0.24           (21) 

 

𝐵 = 𝑃𝑟 ∗ (𝛾 − 1) ∗ 𝑀𝑎𝑒
2           (22) 

 

As same in section 2.3, in this equations F’’ is related to the shear stress, F’ is related to the velocity, F is 

related to the stream function,  is the pressure gradient related to the wedge angle, P is the compressible 

Falkner Skan power, g’ is related to the thermal gradient and g is related to the temperature and density ratios. 
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The local velocity, the skin friction coefficient and the pressure gradient parameter can be obtained by using 

equations 16, 17 and 18 located in section 2.3. 

 

Note: The flat plate special case of C=1 can be obtained by setting P (equation 21) and β to zero. 

2.5 The Falkner Skan Incompressible Flow Solution 
 

The Falkner-Skan solution for incompressible flow is obtain via the application of a similarity transformation 

to the NS equations (equations 5 and 6). 

 

Falkner Skan (1931) found that the similarity condition was achieved when:  

 

𝜂 = 𝐶 𝑦𝑥𝑎             (23) 

 

Where: 

 

𝑈(𝑥) = 𝐾𝑥𝑚           (24) 

 

𝑚 = 2𝑎 + 1           (25) 

 

𝐶2 =
𝐾(1+𝑚)

2Λ
           (26) 

 

Note: Λ is the kinematic viscosity in m2/s. 

 

Applying equations 24, 25 and 26 into equation 23 the similarity equation is obtained as: 

 

𝜂 = 𝑌√
(𝑚+1)∗𝑈(𝑥)

2Λ𝑥
          (27) 

 

Applying this similarity equation (equation 27) to the NS incompressible equations (equations 5 and 6) the 

following Falkner-Skan incompressible flow equations are obtained: 

 

Momentum equation: 

 

𝐹′′′ + 𝐹𝐹′′ +  𝛽 ∗ (1 − 𝐹′ ∗ 𝐹′) = 0        (28) 

 

In this equation, F’’ is related to the shear stress, F’ is related to the velocity, F is related to the stream function, 

 is the pressure gradient related to the wedge angle. 

 

The local velocity can be obtained as: 

 

𝑢 = 𝑈𝑒𝐹′           (29) 

 

The skin friction coefficient is obtained as: 

 

𝐶𝑓 =
2𝜏𝑤

𝜌𝑒𝑈𝑒
2           (30) 

 

The β parameter can be obtained as: 

 

𝛽 = 2 ∗ 𝜃/𝜋           (31) 

 

Or 

692



TFEC-2020-31960 

 

 
 

 

 

𝛽 =
2𝑚

1+𝑚
           (32) 

 

The boundary layer can be obtained by finding η where the local speed is 99% of the free stream velocity, this 

value is used in equation 23 to obtain the y coordinate when this happens for different x values. Note that the 

Blasius solution can be obtained by setting  = 0 for a flat plate. 
 

3. NUMERICAL DETAILS  
 

This section shows the analysis done to solve the Falkner Skan equations for laminar compressible, alternate 

compressible and incompressible flows solutions as well as its boundary conditions. 

 

3.1 Falkner Skan Laminar Compressible Flow Solution 

 
In order to solve the Falkner-Skan compressible equation, it needs to be transformed in to first order differential 

equation. 
 

This is done as follows: 

1) The following values are set up as: 

𝑌1 = 𝐹′′ =
𝑑2𝐹

𝑑𝜂
          (33) 

 

𝑌2 = 𝐹′ =
𝜕𝐹

𝜕𝜂
          (34) 

 

𝑌3 = 𝐹           (35) 

 

𝐹′′′ = [𝛽(𝐹′𝐹′ − 𝑔) − 𝐹𝐹′′]/𝐶        (36) 

 

𝑌4 = 𝑔′ =
𝑑𝑔

𝑑𝜂
          (37) 

 

𝑌6 = 𝑔           (38) 

 

𝑔′′ = (−𝐵 𝐶 (𝐹" F") − Pr(𝐹𝑔′))/𝐶       (39) 

 

2) After solving the following differential equations, the following matrix is obtained: 
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[
 
 
 
 
 
 
 
 
 
 
𝑌1

𝑛+1

𝑌2
𝑛+1

𝑌3
𝑛+1

𝑌4
𝑛+1

𝑌6
𝑛+1

]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

𝑌1
𝑛 + (∆𝑛 ∗ (0.33 ∗ (𝑌2

𝑛 − 𝑌6
𝑛) − 𝑌3

𝑛 ∗ 𝑌1
𝑛)/𝐶𝑛)

𝑌2
𝑛 + ∆𝑛 ∗ 𝑌1

𝑛

𝑌3
𝑛 + ∆𝑛 ∗ 𝑌2

𝑛

𝑌4
𝑛 − ∆𝑛 ∗ (𝑃𝑟 ∗ 𝑌3

𝑛 ∗ 𝑌4
𝑛 + 𝐵 ∗ 𝐶𝑛 ∗ (𝑌1

𝑛 ∗ 𝑌1
𝑛))/𝐶𝑛)

𝑌6
𝑛 + ∆𝑛 ∗ 𝑌4

𝑛

]
 
 
 
 
 
 
 
 
 
 

    (40) 

 

Where Yn is the previous values and Yn+1 are the forward values. 

 

3.2 Falkner Skan Laminar Alternate Compressible Flow Solution 

 
In order to solve the Falkner-Skan alternate compressible equation, it needs to be transformed in to first order 

differential equation. 
 

This is done as follows: 

1) The following values are set up as: 

𝑌1 = 𝐹′′ =
𝑑2𝐹

𝑑𝜂
          (41) 

 

𝑌2 = 𝐹′ =
𝜕𝐹

𝜕𝜂
          (42) 

 

𝑌3 = 𝐹           (43) 

 

𝐹′′′ = [𝛽(𝐹′𝐹′ − 𝑔) − 𝑃𝑔(𝑃−1)𝑔′𝐹′′
− 𝐹𝐹′′]/𝑔𝑃      (44) 

 

𝑌4 = 𝑔′ =
𝑑𝑔

𝑑𝜂
          (45) 

 

𝑌6 = 𝑔           (46) 

 

𝑔′′ = (−𝐵 𝑔𝑃  (𝐹" F") − P𝑔(𝑃−1)(𝑔′𝑔′) − 𝑃𝑟𝐹𝑔′)/𝑔𝑃     (47) 

 

2) After solving the following differential equations, the following matrix is obtained: 
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[
 
 
 
 
 
 
 
 
 
 
𝑌1

𝑛+1

𝑌2
𝑛+1

𝑌3
𝑛+1

𝑌4
𝑛+1

𝑌6
𝑛+1

]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 𝑌1

𝑛 + (∆𝑛 ∗ (𝛽 ∗ (𝑌2
𝑛 ∗ 𝑌2

𝑛 − 𝑌6
𝑛) − 𝑃𝑌6

𝑛𝑃−1
∗ 𝑌4

𝑛 ∗ 𝑌41
𝑛 − 𝑌3

𝑛 ∗ 𝑌1
𝑛)/𝑌6

𝑛𝑃
)

𝑌2
𝑛 + ∆𝑛 ∗ 𝑌1

𝑛

𝑌3
𝑛 + ∆𝑛 ∗ 𝑌2

𝑛

𝑌4
𝑛 − ∆𝑛 ∗ (𝐵 ∗ 𝑌6

𝑛𝑃
∗ (𝑌1

𝑛 ∗ 𝑌1
𝑛) + 𝑃 ∗ 𝑌6

𝑛𝑃−1
∗ 𝑌4

𝑛 ∗ 𝑌4
𝑛 + 𝑃𝑟 ∗ 𝑌3

𝑛 ∗ 𝑌4
𝑛)/𝑌6

𝑛𝑃
)

𝑌6
𝑛 + ∆𝑛 ∗ 𝑌4

𝑛

]
 
 
 
 
 
 
 
 
 
 

 (48) 

 

Where Yn is the previous values and Yn+1 are the forward values. 

 

3.3 Falkner Skan Laminar Compressible and Alternate Compressible Flow Solutions Boundary 

Conditions 

 

This type of problem is solved as an Initial Condition or Initial Boundary value problem. Figure 2 shows the setup 

of the laminar compressible flow simulation. 

 

 
 

Fig. 2: Simulation set up diagram. 

 

The initial boundary conditions near the wall are: 

 

𝐹′(0) = 𝐹(0) = 0          (49) 

 

𝑔(0) = 𝑇𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 = 1 + 𝑟 ∗
𝛾−1

2
𝑀𝑒

2        (50) 

 

𝑔′(0) = 0 𝑓𝑜𝑟 𝐴𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑤𝑎𝑙𝑙         (51) 

 

𝐹′′(0) = 𝐺𝑢𝑒𝑠𝑠          (52) 

 

Where r is the recovery factor obtain as a function of the Prandtl number. The initial boundary conditions far from 

the wall: 
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𝐹′(∞) = 1           (53) 

 

𝑔(∞) = 1           (54) 

 

3.4 Falkner Skan Laminar Compressible Flow Simulation Algorithm 

 

The Falkner-Skan compressible equations are solved by using the point and shoot method which can be solved 

via a numerical derivative or a Runge Kutta method. In this work a numerical derivative was used to solve this 

equation. Note that in the point and shoot method the value of F’’(0) is guessed until the condition F’(∞) = 1 

is achieved. 

 

The algorithm is as follows: 

Inputs: Mach, ρ, μ, Pr, r, , Ly, hy,  

𝜐 = 𝜇/𝜌 

𝐵 = 𝑃𝑟 ∗ (𝛾 − 1) ∗ 𝑀2 

Form η vector 

Initial conditions: Y1=Guess, Y2=0, Y3=0, Y4=0, Y6=gw 

Loop start:  for (i=1; length vector) 

Previous values storage: Y10=Y1, Y20=Y2, Y30=Y3, Y40=Y4, Y60=Y6, C=1 

𝑌1 = (∆𝜂 ∗
𝛽 ∗ 𝑌20 ∗ 𝑌20 − 𝑌30 ∗ 𝑌10

𝐶
) + 𝑌10 

𝑌2 = 𝑌20 + ∆𝜂 ∗ 𝑌10 

𝑌3 = 𝑌30 + ∆𝜂 ∗ 𝑌20 

𝑌4 = 𝑌40 − (∆𝜂 ∗
𝐵 ∗ 𝐶 ∗ 𝑌10 ∗ 𝑌10 + 𝑃𝑟 ∗ 𝑌30 ∗ 𝑌40

𝐶
) 

𝑌6 = 𝑌60 + ∆𝜂 ∗ 𝑌40 

Values storage (arrays): Y1(i)=Y1, Y2(i)=Y2, Y3(i)=Y3, Y4(i)=Y4, Y6(i)=Y6 

Loop end 

 

3.5 Falkner Skan Laminar Alternate Compressible Flow Simulation Algorithm 

 

The Falkner-Skan alternate compressible equations are solved by using the point and shoot method which can 

be solved via a numerical derivative or a Runge Kutta method. In this work a numerical derivative was used 

to solve this equation. 

 

Note: In the point and shoot method the value of F’’(0) is guessed until the F’(∞) = 1 is reached. 

 

The algorithm is as follows: 

Inputs: Mach, ρ, μ, Pr, r, , Ly, hy,  

𝜐 = 𝜇/𝜌 

𝐵 = 𝑃𝑟 ∗ (𝛾 − 1) ∗ 𝑀2 

Form eta vector 

Initial conditions: Y1=Guess, Y2=0, Y3=0, Y4=0, Y6=gw 

Loop Start:  for (i=1; length vector) 

Previous Values Storage: Y10=Y1, Y20=Y2, Y30=Y3, Y40=Y4, Y60=Y6, P=0 or -0.24 

𝑌1 = 𝑌10 + ∆𝜂 ∗ (𝛽 ∗ (𝑌20 ∗ 𝑌20 − 𝑌60) − 𝑃 ∗ 𝑌60𝑃−1 ∗ 𝑌40 ∗ 𝑌10 − 𝑌30 ∗ 𝑌10)/𝑌60𝑃 

𝑌2 = 𝑌20 + ∆𝜂 ∗ 𝑌10 

𝑌3 = 𝑌30 + ∆𝜂 ∗ 𝑌20 

𝑌4 = 𝑌40 − Δ𝜂 ∗ (𝐵 ∗ 𝑌60𝑃 ∗ 𝑌10 ∗ 𝑌10 + 𝑃 ∗ 𝑌60𝑃−1 ∗ 𝑌40 ∗ 𝑌40 + 𝑃𝑟 ∗ 𝑌30 ∗ 𝑌40)/𝑌60𝑃 

𝑌6 = 𝑌60 + ∆𝜂 ∗ 𝑌40 

Values Storage (Arrays): Y1(i)=Y1, Y2(i)=Y2, Y3(i)=Y3, Y4(i)=Y4, Y6(i)=Y6 

Loop end 
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3.6 Falkner Skan Laminar Incompressible Flow  

 
The Falkner-Skan incompressible equation needs to be transformed in to first order differential equation, as 

follows: 
 

1) The following values are set up as: 

𝑌1 = 𝐹′′ =
𝑑2𝐹

𝑑𝜂
          (55) 

 

𝑌2 = 𝐹′ =
𝜕𝐹

𝜕𝜂
          (56) 

 

𝑌3 = 𝐹           (57) 

 

𝐹′′′ = [𝛽(𝐹′𝐹′ − 1) − 𝐹𝐹′′]        (58) 

 

2) After solving the following differential equations, the following matrix is obtained: 

 

[
 
 
 
 
 
𝑌1

𝑛+1

𝑌2
𝑛+1

𝑌3
𝑛+1

]
 
 
 
 
 

=

[
 
 
 
 
 
𝑌1

𝑛 + (∆𝑛 ∗ ((𝑌2
𝑛 − 𝑌6

𝑛) − 𝑌3
𝑛 ∗ 𝑌1

𝑛))

𝑌2
𝑛 + ∆𝑛 ∗ 𝑌1

𝑛

𝑌3
𝑛 + ∆𝑛 ∗ 𝑌2

𝑛

]
 
 
 
 
 

      (59) 

 

Where Yn is the previous values and Yn+1 are the forward values. 

 

3.7 Falkner Skan Laminar Incompressible Flow Initial Conditions 

 

This type of problem is solved as an Initial Condition or Initial Boundary value problem. Figure 2 shows the setup 

of the incompressible flow simulation, which is very similar to the compressible set up. 

 

The initial boundary conditions near the wall are: 

 

𝐹′(0) = 𝐹(0) = 0          (60) 

 

𝐹′′(0) = 𝐺𝑢𝑒𝑠𝑠          (61) 

 

The initial boundary conditions far from the wall: 

 

𝐹′(∞) = 1           (62) 

 

 

 

 

 

697



TFEC-2020-31960 

 

 
 

 

 

3.8 Falkner Skan Incompressible Flow Simulation Algorithm 

The Falkner-Skan incompressible equations are solved by using the point and shoot method which can be 

solved via a numerical derivative or a Runge Kutta method. In this work a numerical derivative was used to 

solve this equation. 

 

Note: In the point and shoot method the value of F’’(0) is guessed until the F’(∞) = 1 is reached. 

 

The algorithm is as follows: 

Inputs: U, ρ, μ, , Ly, hy,  

𝜐 = 𝜇/𝜌 

Form η vector 

Initial conditions: Y1=Guess, Y2=0, Y3=0 

Loop start:  for (i=1; length vector) 

Previous Values Storage: Y10=Y1, Y20=Y2, Y30=Y3 

𝑌1 = (∆𝜂 ∗ (𝛽 ∗ 𝑌20 ∗ 𝑌20 − 𝑌30 ∗ 𝑌10)) + 𝑌10 

𝑌2 = 𝑌20 + ∆𝜂 ∗ 𝑌10 

𝑌3 = 𝑌30 + ∆𝜂 ∗ 𝑌20 

Values storage (arrays): Y1(i)=Y1, Y2(i)=Y2, Y3(i)=Y3 

Loop end 

 

4. RESULTS AND CODE VALIDATION  
 

4.1 Blasius Incompressible Solution Validation 

 

Figure 3 shows the F’ vs ɳ theoretical values (red curve) for the Blasius incompressible flow solution ( = 0). A 

very good agreement with White [4] results can be observed. Also, it could be said that as η increases, F’ also 

increases reaching asymptotically a unitary value around η = 4 (location of the boundary layer thickness). 

 

 
Fig. 3: F’ vs η Blasius incompressible flow validation. 

 

Figure 4 depicts F’’ vs ɳ theoretical values (red curve) for the Blasius incompressible flow solution. As observed 

in the figure, F’’ obtained by our MATLAB code almost coincides with values from [4]. Also, it is important to 

mention that F’’ starts at a guess value of 0.4696 and tends towards a zero value far from the wall, namely, in the 

inviscid region outside the boundary layer. 
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Fig. 4: F’’ vs η Blasius incompressible flow validation. 

 

4.2 Falkner Skan Incompressible Flow Validation for a Wedge flow of 27○ and -16.2○ degrees 

(β=0.3 and -0.18) 
 

Figure 5 shows F’ vs η theoretical values from the Viscous Flow book by White [4] (black symbols) and 

present MATLAB results (red) for the incompressible wedge flow at 27○ (contraction or FPG case). As it can 

be seen in Figure 5, the MATLAB result highly coincide with the theoretical results showing a very good 

agreement. Since a Favorable Pressure Gradient (FPG) or acceleration is prescribed to the flow, it is observed 

a shrinking process of the boundary layer thickness. The ratio of the streamwise velocity (U) to the freestream 

velocity (Ue) (in other words, F’) reaches a unitary value around η  3. 

 

 
Fig. 5: F’ vs η for the incompressible wedge at β=0.3 or FPG. 

 

Similarly, Figure 6 shows the F’’ vs ɳ theoretical values from the Viscous Flow Book (black) and MATLAB (red) 

for the incompressible wedge flow solution of 27○. As observed in the figure, F’’ values obtained with MATLAB 

almost overlap with results from [4]. The initial guess of F’’ (0) was 0.77476, thus a significant increase of the 

wall shear stress with respect to the flat plate or Zero-Pressure Gradient (ZPG) case (in the order of 65%) is 

achieved by imposing a strong flow acceleration. 

699



TFEC-2020-31960 

 

 
 

 

 

 

 
Fig 6: F’’ vs η for incompressible wedge for β=0.3 or FPG. 

 

Figure 7 shows F’ vs η theoretical values from [4] (black symbols) and present MATLAB results (red) for the 

incompressible wedge flow solution of -16.2○ (expansion or APG case). As it can be seen in the figure, present 

result seems to highly coincide with the theoretical results showing a very good agreement. Since an Adverse 

Pressure Gradient (APG) or acceleration is prescribed to the flow, it is observed a growing process of the 

boundary layer thickness. The ratio of the streamwise velocity (U) to the freestream velocity (Ue) (in other 

words, F’) reaches a unitary value around η  5. 
 

 
Fig. 7: F’ vs η for incompressible wedge for β = -0.18 

 

Figure 8 shows the F’’ vs ɳ theoretical for the incompressible wedge flow solution of -16.2○ or  = -0.18. As 

observed in figure 8, the obtained F’’ exhibits very good agreement with [4]. The initial guess of F’’ (0) was 

0.12864, thus a significant decrease of the wall shear stress (in the order of 70%) is achieved by imposing a strong 

flow acceleration. Notice that the value of  equal to -0.18 induces a very strong APG to the laminar boundary 

layer, which is prone to flow separation (critical = -0.198838). Interestingly, the shear stress profile exhibits a local 

off-wall maximum at η = 1.8.  
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Fig. 8: F’’ vs η for incompressible wedge for β = -0.18. 

 

 

4.3 Falkner Skan Incompressible Flow for Different β Values 
Figure 9 shows the F’ distribution vs ɳ for β of -0.18 (yellow), 0 (black), 0.3 (red) and 1 (green). The figure 

shows that as the flow acceleration increases (higher positive values of ) higher values of the streamwise 

velocity U are observed at the same wall normal coordinate η. The boundary layer thickness experiences a 

shrinking process in FPG flows. On the contrary, in APG flows (i.e., β = -0.18), the velocity profile F’ tends 

to displace away from the wall, meaning that for APG the boundary layer thickness increases, due to the flow 

deceleration and boundary layer entrainment. 

 

 

Fig. 9: F’ vs η for Wedge Incompressible Flow for β of -0.18 (yellow), 0 (black), 0.3 (red) and 1.0 (green). 

 

Figure 10 shows the F’’ distribution as a function of ɳ for β equal to -0.18 (yellow), 0 (black), 0.3 (red) and 1 

(green). The figure shows that as β positively increases, wall shear stresses also increase, because in the 
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contraction the incompressible flow accelerates. As expected, F’’ asymptotically decreases away from the wall, 

until reaching a zero-value at the edge of the boundary layer. Note that for the strong APG case or β = -0.18 

significant values of the shear stress are observed in the outer region of the boundary layer, i.e. for η > 2.   
 

 
Fig. 10: F’’ vs η for wedge incompressible flow. 

 

 

 

4.4 Blasius Compressible and Incompressible Flow Comparison setting C = 1 and  = 0 Special  

      Case 

Figure 11 shows the F’ vs ɳ MATLAB Compressible (red) and White Viscous Flow Book [4] Incompressible 

(black) solution. It can be seen in the figure that the compressible and incompressible solutions are practically the 

same. This is because when C and β are set to 1 and 0 (ideal case), respectively, the compressible Blasius and 

Falkner-Skan solution are the same as the momentum conservation equation does not depend on the energy 

equation. This means that the momentum equation can be solved independently form the energy equation.  

  

 
Fig. 11: F’ vs η Blasius Incompressible and Compressible Solution Comparison. 

 

Figure 12 shows the F’’ vs ɳ MATLAB Compressible (red) and White Viscous Flow Book Incompressible (black) 

solution. Again, it can be seen in the figure that the compressible and incompressible solutions nearly overlap.  
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Fig. 12: F’’ vs η Blasius Incompressible and Compressible Solution Comparison. 

 

 

4.5 Blasius Solution for Various Mach Numbers, P = -0.24 and Pr = 0.71 for a flat  

      plate  
Figure 13 shows the F’ distribution vs ɳ for Mach of 2 (black), 4 (red), 6 (green), 8 (blue) and 10 (yellow). 

The figure shows that as the Mach number increases the curve tends to move leftward (closer to the wall) 

because it reaches a unitary value at an earlier ɳ. Compressibility effects can be described as a local flow 

acceleration as the Mach number increases for the same value of ɳ. Also, it is important to highlight that as the 

Mach number increases the boundary layer thickness significantly shrinks. 

 

 
Fig. 13: F’ vs η for Mach from 2 to 10. 

 

Figure 14 shows the F’’ vs. ɳ distribution for different Mach numbers. The F” values (proportional to the local 

shear stresses) exhibit a huge enhancement in hypersonic flows (i.e., Mach numbers higher than 5) and in the 

near wall region ɳ < 1.2. Beyond that point of ɳ  1.2, all profiles at the different Mach numbers show a trend 

change: higher Mach number profiles depict lower values of the shear stress. This is consistent with the unitary 

value (F’ → 1 as η → ∞) of the area enclosed by each curve.      
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Fig. 14: F’’ vs η for Mach from 2 to 10. 

 

Figure 15 depicts the thermal distribution (g) for different Mach numbers under adiabatic wall condition. 

Contrary what occurred on the velocity field, the thermal boundary layer grows for the hypersonic regime. It 

also evident the significant heating of the fluid flow in the near wall region for Mach numbers larger than 6, 

e.g. at the hypersonic level. Local values of the temperature are up to 18 times larger than the freestream 

temperature. 

 

 
Fig. 15: g vs η for Mach numbers from 2 to 10. 

 

 

6. CONCLUSIONS 
 

The algorithm developed for Falkner-Skan incompressible and compressible laminar flows was successfully 

validated. The Blasius special case for C = 1 and  = 0 for compressible flow yielded very similar results to 

the incompressible counterpart solution since the momentum equation is decoupled from the energy equation. 

Compressibility effects have been identified as a local increase of the streamwise velocity U as the Mach 

number increases for the same vertical coordinate. While the hydrodynamic boundary layer exhibits a strong 

shrinking process in the hypersonic regime, the thermal boundary layer grows. Furthermore, the thermal load 

strikingly augments beyond Mach numbers of 6 and adiabatic wall conditions.  
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NOMENCLATURE 
 

ξ dimensionless variable ( - ) 

𝜌𝑒 Density at wedge edge (kg/m3) 

𝑈𝑒 Velocity at wedge edge (m/s) 

𝜇𝑒 Dynamic viscosity at the  

wedge edge (Pa/s) 

𝜂 dimensionless variable ( - ) 

t time (s) 

h Enthalpy (W/kg) 

𝑃𝑒 Pressure at Wedge Edge (Pa) 

P Local Pressure (Pa) 

u Local velocity x (m/s) 

v Local velocity y  (m/s) 

ρ Local Density (kg/m3) 

𝜌∞ Free stream Density (kg/m3) 

x Distance x direction (m) 

y Distance y direction (m) 
C Dimensionless ration between density and 

viscosity and edge density and viscosity 

( - ) 

F” Dimensionless Shear Parameter ( - ) 

F’ Dimensionless Velocity Parameter ( - ) 

F Dimensionless Free Stream Parameter ( - ) 

g’ Dimensionless Heat Flux ( - ) 

g Dimensionless Temperature ratio 

parameter ( - ) 

Pr Prandlt Number ( - ) 

Mach Mach number ( - ) 

 Pressure Gradient ( - ) 

Cfx Skin friction coefficient ( - ) 

𝜏𝑤 Wall Shear Stress (Pa) 

𝜃 Wedge Angle (Radians) 

m Power Law Parameter ( - ) 

a Constant ( - ) 
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